3.0 GPa and varied slightly as a function of substrate geometry. X-Ray diffraction and scanning electron microscopy equipped with energy dispersive X-ray spectroscopy were utilized to investigate the microstructural development of thermal barrier coatings. The as-deposited non-equilibrium tetragonal (t′) phase in the YSZ coatings was observed to decompose after the service, but the monoclinic (m) phase was only found in the YSZ coatings with concave substrate curvature on the pressure side of the HPT blade. Also, a significant sintering of ZrO2–8 wt.% Y2O3 coating after the service was observed in the microstructure. Localized spallation of YSZ occurred within the thermally grown oxide (mostly α-Al2O3) and within the ZrO2–8 wt.% Y2O3 coating for pressure and suction sides of the serviced high pressure turbine blade near the tip, respectively. Author Keywords: Scanning electron microscopy; X-Ray diffraction; Thermal barrier coatings; Photostimulated luminescence spectroscopy; Turbine blade; Failure analysis



0 komentar:
Posting Komentar